FACE SELECTIVITY DURING THE CYCLOADDITION REACTION OF NITRILE OXIDES WITH IRON COMPLEXED TRIENES.

Thierry Le Gall *, Jcan-Paul Lellouche *, Loïc Toupet ** and Jean-Pierre Beaucourt *

* Service des Molécules Marquées, Bt 547, CEN Saclay, 91191 Gif-sur-Yvette Cédex, France. ** Département de Physique Cristalline, Université de Rennes I, 35042 Rennes Cédex, France.

Summary: Various nitrile oxides were reacted with iron complexed trienes of type 1. The reaction proceeded with good yield and diastereoselectivity (c.a. 90/10) to give Δ^2 -isoxazolines which structures were determined by X-Ray and ¹H-NMR spectroscopy.

 Δ^2 -isoxazolines, obtained by [3+2] dipolar cycloaddition of nitrile oxides with olefins, are useful intermediates in the synthesis of β -hydroxyketones and γ -amino alcohols ⁽¹⁾ (scheme 1).

A chiral \mathbb{R}^2 residue on the alkene can be used to discriminate the two Π -faces of the double bond during the cycloaddition reaction ⁽²⁾. We thought that the butadiene iron tricarbonyl residue would be suitable, and consequently compounds of type 1 would lead to

$$R^{3}$$
 Fe
(CO)₃

diastereoselective reactions. Since several butadiene iron tricarbonyl complexes have been prepared in optically active form $^{(3)}$, chiral isoxazolines could be synthesized in this way.

This communication presents the preparation of the complexed trienes 1 and their cycloaddition with nitrile oxides; the study was carried out in the racemic series.

1 - Preparation of the complexed trienes $\underline{1}$

Aldehydes 2 a-c available in optically active form ($\mathbb{R}^3 = \mathrm{Me}^{(4)}$, CH₂OSitBuPh₂⁽⁵⁾, CO₂Me⁽⁶⁾) were chosen as precursors of the corresponding trienes 1 a-c. The Wittig reaction of **2a** with methylene triphenylphosphorane proceeded only in poor yield ($\equiv 25 \%$) in our hands ⁽⁷⁾. However, the Peterson olefination ⁽⁸⁾ gave satisfactory results (scheme 2). Thus, trimethylsilylmethyl lithium or magnesium chloride (1.5 equivalent, 1.0 M solution in pentane) was reacted with a THF solution of **2** at - 78°C for one hour. After usual workup, a mixture of diastereomeric alcohols 3 was obtained and converted without separation to the olefins 1 ⁽⁹⁾ by treatment with acidic silica gel in dichloromethane (2 % aqueous H₂SO₄, 70-230 mesh Merck Silica gel, 3-4 hours).

Entry	R ³	Me ₃ SiCH ₂ M	Overall yield of 1 from 2
a	Me	Me ₃ SiCH ₂ Li	90 %
b	CH ₂ OSitBuPh ₂	Me ₃ SiCH ₂ Li	80 %
c	CO ₂ Me	Me ₃ SiCH ₂ MgCl	50 %

Scheme 2

2 - Nitrile oxide cycloaddition with complexed trienes $\underline{1}$ a-c

The results are summarized in table 1. The complexes 1 a-c (1 equivalent) were reacted with 1.25-2 equivalents of nitrile oxides generated in situ either by dehydration of nitro compounds (PhNCO, cat. Et₃N, benzene, room temp., 22 hours ; entries a-d, table 1) ⁽¹⁰⁾ or by dehydrohalogenation of hydroxymoyl chlorides (Et₃N, ether, room temp., 2 hours ; entries e-f, table 1) ⁽¹¹⁾. A mixture of the two diastercomeric isoxazolines 4 and 5 was obtained. Byproducts were filtered off when necessary through a short silica gel pad (hexane-ethyl acetate) and the 4/5 ratio was determined by NMR integration of the methylene protons signals of the isoxazoline ring (C₆D₆, 300 MHz). In most cases, the major less polar product 4 was isolated by silica gel flash chromatography ⁽⁹⁾ in 65-83 % yield.

The stereochemistry of the cycloadducts is based on a single-crystal X-ray analysis of compound 4c ⁽¹²⁾ (R³ = CO₂Me, R¹ = Me; figure 1). By analogy, the major product in each case was assigned the same stereochemistry; we have also noted that the chemical shifts for the methylene protons of the isoxazoline ring in compounds 4 are consistently deshielded ($\Delta \delta = 0.13-0.34$ ppm), compared with the corresponding protons in compounds 5.

Fe (CO) ₃	$\mathbb{R}^{1} \mathbb{C} \cong \mathbb{N} \to \mathbb{O}$	R ³ Fe (CO) ₃ 4	$R^1 + R^3$	Fe (CO) ₃ 5
Entry	R ³	R ¹	4/5 Ratio	Yield of 4 ^a
8	Me	Ме	88/12	72 %
b	tBuPh ₂ SiOCH ₂	Ме	90/10	70 %
c	CO ₂ Me	Ме	88/12	75 %
d	Ме	Et	86/14	65 %
e	Me	tBu	90/10	83 % b
f	Me	Ph	91/9	71 %

a) Unless noted, yield of product isolated by flash chromatography.

b) The two diastereomers could not be separated by flash chromatography; the yield was evaluated by ¹H-NMR of the purified mixture.

X-Ray structure of the complexed isoxazoline <u>4c</u> Fig. 1

The diastereomer ratio 4/5 (about 90/10) does not seem to depend on the structure of the complex 1 or of the nitrile oxide. For compound 1f only, the cycloaddition reaction was carried out at a lower temperature (- 40°C), which did not improve the 4/5 ratio or the cycloaddition yield.

According to scheme 3, the observed diastereoselectivity can be explained assuming that :

a) The nitrile oxide attacks anti to the bulky iron tricarbonyl group;

b) The rotamers of 1 involved in the cycloaddition transition state are those having one face of the vinyl group sterically less hindered i.e. 1s-trans and 1s-cis rotamers. The attack of the nitrile oxide on the 1 s-trans form would lead to isoxazoline 4, whereas the attack on the 1 s-cis form would lead to its diastereomer 5.

Examination of a Dreiding model of the complexed triene 1 shows that the s-cis form is less probable, due to the steric interaction between the two protons H^1 and H^4 , which would explain that the corresponding cycloadduct 5 is the minor isomer. The diastereoselectivity does not depend on :

a) The nature of the R^3 substituent of the complex, which does not significantly affect the rotameric preference.

b) The nature of the nitrile oxide, probably because in the transition state, R^1 is relatively far from the new asymmetric center.

The use of chiral complexed trienes 1 in cycloaddition reactions with nitrile oxides appears to be an interesting method to prepare optically active isoxazolines, which are precursors of β -hydroxy ketones ⁽¹³⁾ and γ -amino alcohols.

References and notes

1 - Leading references :

- a) D.P. Curran, J. Am. Chem. Soc., 1983, <u>105</u>, 5826.
 b) A.P. Kozikowski, Acc. Chem. Res., 1984, <u>17</u>, 410.
 c) V. Jäger, I. Müller, R. Schohe, M. Frey, R. Ehrler, B. Häfele, D. Schröter, Lect. Heterocyc. Chem., 1985, <u>8</u>, 79.
- a) A.P. Kozikowski, A.K. Ghosh, J. Org. Chem., 1984, <u>49</u>, 2762.
 b) M. De Amici, C. De Micheli, A. Ortisi, G. Gatti, R. Gandolfi, L. Toma, J. Org. Chem., 1989, <u>54</u>, 793.
 c) D.P. Curran, B.H. Kim, J. Daugherty, T.A. Heffner, Tetrahedron Lett., 1988, <u>29</u>, 3555.
 d) A.P. Kozikowski, X.-M Cheng, Tetrahedron Lett., 1985, <u>26</u>, 4047.
 e) P.A. Wade, S.M. Singh, M.K. Pillay, Tetrahedron, 1984, <u>40</u>, 601.
 f) D.P. Curran, B.H. Kim, H.P. Piyasena, R.J. Loncharich, K.N. Houk, J. Org. Chem., 1987, <u>52</u>, 2137.
- 3 R. Grée, Synthesis, 1989, 341 and publications cited therein.
- 4 M. Franck-Neumann, D. Martina, M.P. Heitz, Tetrahedron Lett., 1982, 23, 3493.

5 - The protected alcohol complex 2b is obtained from 2c $[HC(OMe)_3, pTsOH, CH_2Cl_2; DIBAL-H, ether-toluene; HCl 1M; tBuPh_2SiCl, imidazole, DMF].$

6 - A. Monpert, J. Martelli, R. Grée, R. Carrié, Tetrahedron Lett., 1981, 22, 1961.

7 - The synthesis of 1a by this method has been previously described (no yield reported) : C.H. Mauldin, E.R. Biehl, P.C. Reeves, Tetrahedron Lett., 1972, 2955.

8 - D.J. Peterson, J. Org. Chem., 1968, <u>33</u>, 780. For a review on the Peterson reaction, see : D.J. Ager, Synthesis, 1984, 384.

9 - Satisfactory spectral data (¹H-NMR, IR, M.S.) were obtained for all new compounds.

10 - T. Mukaiyama, T. Hoshino, J. Am. Chem. Soc., 1960, 82, 5339.

11 - M. Christl, R. Huisgen, Chem. Ber., 1973, 106, 3345.

12 - Informations on the X-Ray structure of isoxazoline 4c can be obtained from Dr L. Toupet.

13 - See following paper.

(Received in France 14 August 1989)